1.8

VADYM LASHKARYOV’S SCIENTIFIC CONTRIBUTION IN SEMICONDUCTOR PHYSICS AND TECHNOLOGY (DEVOTED TO THE 120th ANNIVERSARY OF HIS BIRTH)

V.S. SOLNTSEV 1
https://orcid.org/0000-0003-4441-2667
P.S. SMERTENKO 1
https://orcid.org/0000-0001-8793-302X
1 V. Lashkaryov Institute of Semiconductor Physics of the NAS of Ukraine

Nauka naukozn. 2023, 3(121): 166—185
https://doi.org/10.15407/sofs2023.03.166

Section: Science and technology history
Language: Ukrainian
Abstract: The article investigates and popularizes the life and work of Vadym Yevhenovych Lashkaryov, an acting member of the Academy of Sciences of the UkrSSR, and a brilliant Ukrainian scientist in semiconductor physics and technology. Its purpose is to show V. Lashkaryov’s outstanding success in activities pertaining to R&D performance and management on the territory of Ukraine. The source base of the research consists of research publications of the scientist, his colleagues and disciples, devoted to electron diffraction physics, photoelectric phenomena, physics of semiconductor single-crystal growth, and charge carrier transport in p- and n-type semiconductors. The research methodology is based on the principles of historicism, objectivity and reliability. Specific historical methods such as classification, synthesis, analysis, and problem-chronological and comparative-historical methods were used. It is shown that the research carrier of V. Lashkaryov’s was divided into four main periods: (i) formation of his research potential (1924—1935); (ii) his trials during the exile to Arkhangelsk (1935—1939); (iii) achievement of his research maturity (1939—1944); and (iv) creation of his intellectual heritage (1945—1970). Results of a scientometric analysis of the V. Lashkaryov’s profile in the Web of Science citation database are given, with focus on recent citation data of his articles, giving evidence that his works still remain relevant today. It is shown that outstanding leadership and organizational traits of V. Lashkaryov’s allowed him to lay the foundations of his intellectual heritage in Kyiv in the 40–70s of the last century: (i) the academic school for theoretical and experimental semiconductor physics; (ii) the Department of Semiconductor Physics at Taras Shevchenko Kyiv State University; and (iii) the Institute of Semiconductors of the Academy of Sciences of the UkrSSR.

Keywords: V. Lashkaryov, electron diffraction, p-n junction, current injection, semiconductor physics and technology, Institute of Semiconductors of the Academy of Sciences of UkrSSR.

References

  1. Lashkarev, V. (1941). Follow-up of the locking ball by the thermoprobe method. Vіdomostі AN SRSR. Ser. Physics, 5, 4—5, 442—456 [in Russian].
  2. Lashkarev, V. (1941). Investigation of the barrier layer. J. of Phys. USSR, 4 (1—2), 172—173 [in Russian].
  3. Bardeen, J., & Brattain, W.H. (1948). The transistor, a semi-conductor triode. Phys. Rev., 74, 230—231. https://doi.org/10.1103/PhysRev.74.230
  4. Brattain, W.H., & Bardeen, J. (1948). Nature of the Forward Current in Germanium Point Contacts. Phys. Rev., 74, 231—232. https://doi.org/10.1103/PhysRev.74.231
  5. Shockley, W. (1949). The Theory of p-n Junctions in Semiconductors and p-n Junction Transistors. Bell Labs Technical Journal, 28 (3), 435—489. https://doi.org/10.1002/j.1538-7305.1949.tb03645.x
  6. Grigoryev M.M., Kravetskii, M.Yu, Matiyuk, I.M., Onyshchenko, V.F., Sukach, A.V., & Tetyorkin, V.V. (2019). Academician O.G. Goldman — the founder of semiconductor physics and technology in Ukraine (Review. Part I). Optoelectron. Semicond. Tech. 54, 5—50. https://doi.org/10.15407/iopt.2019.54.005 [in Ukrainian].
  7. Grigoryev, M.M., Kravetskii, M.Yu., Matiyuk, I.M., Onyschenko, V.F., Sukach, A.V. & Tetyorkin, V.V. (2020). Academician O.G. Goldman in exile. The long and difficult way to return to Ukraine (Review. Part II). Optoelectron. Semicond. Tech. 55, 9—57. https://doi.org/10.15407/iopt.2020.55.009 [in Ukrainian].
  8. Len, A.Ye. (2010). Vadim Yevgeniyevich Lashkaryov: Th e First Director of the Institute for Semiconductor Physics of the National Academy of Sciences of Ukraine. Kyiv [in Russian].
  9. Belyaev, O.E., Kladko, V.P., Smertenko, P.S., Solntsev, V.S., Kinko, T.A., & Kyyak, Yu.P. (Eds.) (2020). V. Lashkaryov Institute of Semiconductor Physics of the National Academy of Sciences of Ukraine 1960—2020. Kyiv: Akademperiodika. https://doi.org/10.15407/akademperiodyka.413.290 [in Ukrainian].
  10. Machulin, V. (2010). Semiconductor in all dimensions (50 anniversary of V. Lashkaryov Institute of Semiconductor Physics of the National Academy of Sciences of Ukraine). Visn. Nac. Akad. Nauk Ukr., 10, 42—46. URL: http://visnyk-nanu.org.ua/uk/node/2027 [in Ukrainian].
  11. Bogolyubov, N.N., Vul, B.M., Kalashnikov, S.G., Pekar, S.І., Rashba, Е.І., & Snitko, О.V. (1975). In memory of Vadim Yevgeniyevich Lashkaryov. Uspekhi Fizicheskikh Nauk, 117 (2), 377—378. https://doi.org/10.3367/UFNr.0117.197510g.0377 [in Russian].
  12. Amosov, N.M. (1998). Voices of time. 1937. Professor Lashkaryov. “Another physics”. Kiev: Oranta-Pres [in Russian].
  13. Malinovskiy, B. (2001). The known and the unknown in the history of information technologies. Visn. Nac. Akad. Nauk Ukr., 1, 40—54 [in Ukrainian].
  14. Andreeva, A.V., & Andreev, K.V. (2013). 110 years since the birthday of Academician Vadim Yevgeniyevich Lashkaryov (1903—1974). Anniversary and commemorative dates in the medical and health care sector in the Arkhangelsk region for 2013. Arkhangelsk, 248—256 [in Russian].
  15. Litovchenko, V.G. (2016). Academician of the NAS of Ukraine Vadym Evgenovych Lashkaryov: the Outstanding Physicist of the 20th Century, the Discoverer of a p-n-Junction Ukrainian Journal of Physics, 61 (2), 181. https://doi.org/10.15407/ujpe61.02.0181 [in Ukrainian].
  16. Keselbrenner, G.L. (1987). Chronicle of one diplomatic career. Diplomat-orientalist S.L. Lashkaryov and his time. Moscow: Nauka [in Russian].
  17. Laschkarew, W. (1926). Zur Theorie der Gravitation. Zeitschrift für Physik, 35 (6), 473—476. https://doi.org/10.1007/BF01385424
  18. Laschkarew, W. (1927). Zur Theorie der Bewegung von Materie und Lichtim Gravitationsfelde. Zeitschrift für Physik, 44 (4—5), 361—368. https://doi.org/10.1007/BF01391203
  19. Laschkarew, W. (1927). Ableitung des Fresnelschen Mitführungskoeffi zienten aus der Lichtquantentheorie. Zeitschrift für Physik, 44 (4—5), 359—360. https://doi.org/10.1007/BF01391202
  20. Linnik, W., & Laschkarew, W. (1926). Die Bestimmung des Brechungsindex der Röntgenstrahlenaus der Erscheinung der Totalreflexion. Zeitschrift für Physik. 38 (9—10), 659—671. https://doi.org/10.1007/BF01397358
  21. Linnik, V.P., & Lashkarev, V.E. (1926). Methods of fixation of x-ray changes. Ukr. Phys. Zap., 1, 5—8 [in Ukrainian].
  22. Linnik, V.P., & Lashkarev, V.E. (1927). Significance of the indicator of broken x-ray changes from the manifestations of a splendid mid-battle. Ukr. Phys. Zap., 2, 3—11 [in Ukrainian].
  23. Lashkaryov, V. (1927). Introduction to the theory of the movement of matter and light in the gravitational field. Ukr. Phys. Zap., 1 (2), 12—21 [in Ukrainian].
  24. Laschkarew, W., & Kuzmin, G. (1934). Effect of Temperature on Diffraction of Slow Electrons and its Application. Nature, 134, 62. https://doi.org/10.1038/134062a0
  25. Laschkarew W.E. (1930). Zur Struktur AlCl3. Zeitschrift für Physik, 193 (3), 270—276. https://doi.org/10.1002/zaac.19301930123
  26. Laschkarew W., & Alichanian A. (1931). Asterismus der Laueaufnahmen des Steinsalzes und innere Spannungen. Zeitschrift Für Kristallographie — Crystalline Materials, 80 (3—4), 353. https://doi.org/10.1524/zkri.1931.80.1.353
  27. Laschkarew, W.E., Bärengarten, E.W., & Kuzmin, G.A. (1933). Beugunglangsamer Elektronenan Graphiteinkristallen. Zeitschrift für Physik, 85  (9—10), 631—646. https://doi.org/10.1007/BF01331004
  28. Laschkarew, W.E. (1933). Zur Bestimmung des inneren Potentials aus Elektronenbeugung. Zeitschrift für Physik, 86 (11—12), 797—801. https://doi.org/10.1007/BF01337882
  29. Laschkarew, W.E. (1934). Uber die Bestimmung des Ganges des inneren Potentials in einem Kristallgitteraus den Abweichungenvom Braggschen Gesetzbei Elektronenbeugung. II. Teil. Zeitschrift für Physik, 89 (11—12), 820—825. https://doi.org/10.1007/bf01341395
  30. Laschkarew, W.E. (1935). Inner potentials of crystals and the electron diffraction. Trans. Faraday Soc., 31, 1081—1095. https://doi.org/10.1039/TF9353101081
  31. Lashkarev, V.E. (1933). Diffraction of electrons. Problems of Advanced Physics. Leningrad; Moscow: GTTI [in Russian].
  32. Lashkarev, V. (1940). Branching of current in the nerve trunk. Bull. Experim. Biol. and Med., 9 (2—3), 99—102 [in Russian].
  33. Lashkarev V., & Mertsalova, S.M. (1940). The laws of irritation and the electric resistance of the medullat based on capacitor theory. Bull. Experim. Biol. and Med., 9(2—3), 103—105 [in Russian].
  34. Lashkaryov, V. (1940). Nerve adaptation to direct current by second width. Bull. Experim. Biol. and Med., 9 (5), 345—347 [in Russian].
  35. Bardeen, J., & Brattain, W.H. (1998). The transistor, a semiconductor triode. Proc. IEEE, 86, 29.
  36. Guo, B., Liu, T., & Yu C. (2019). Multifunctional quantum thermal device utilizing three qubits. Physical Review E. 99 (3), 032112-1-8.
  37. Khramov, Yu.O. (2017). Solomon Іsakovych Pekar and his academic school (the 100th anniversary since the birthday). Science and Science of Science, 4, 107—121 [in Ukranian]. https://doi.org/10.15407/sofs2017.04.107
  38. Lashkarev, V.E., & Kossonogova, K.M. (1941). Influence of impurities on the rectifier photoeffect in cuprous-oxide. J. of Phys. USSR, 4 (1—2), 174—189.
  39. Saha, A., Nia, S.S., & Rodríguez, J.A. (2022). Electron Diffraction of 3D Molecular Crystals. Chemical Reviews, 122 (17), 13883—13914. https://doi.org/10.1021/acs.chemrev.1c00879
  40. Varga, Z., Kolonits, M., & Hargittai, M. (2012). Comprehensive study of the structure of aluminum trihalides from electron diffraction and computation. Structural Chemistry, 23 (3), 879—893. https://doi.org/10.1007/s11224-011-9943-4
  41. Wang, G., & Mudring A.-V. (2016). The missing hydrate AlF3·6H2O [Al(H2O)6] F3: Ionothermal synthesis, crystal structure and characterization of aluminum fluoride hexahydrate. Solid State Sciences, 61, 58—62. https://doi.org/10.1016/j.solidstatesciences.2016.09.007
  42. Adekunle, B.A., & Adeniyi O.S. (2012). Effects of aluminium chloride exposure on the histology of spleen of Wistar rats. Research Journal of Medical Science,6 (6), 275— 280. URL: https://docsdrive.com/pdfs/medwelljournals/rjmsci/2012/275-280.pdf
  43. Andrew, J.S. Hamilton, Jason P. Lisle. (2008). The river model of black holes. American Journal of Physics, 76 (6), 519—532. https://doi.org/10.1119/1.2830526

Full Text (PDF)